SERF, Thoughts

Your Glasses Aren’t Prepared !

For a long time, I played around with the concepts of syntax and semantic, trying to make them practical and clearer to me.

Both are approaches to study a message, but syntax is more about structure while semantic is more about meaning.
Syntax is easier to study as it is made over linguistic conventions, such as Chomsky grammatical approach. Syntax is the part of a message that we can all agree upon as the rules are (but haven’t always be) properly stated.

Semantic is what is meant by the message. So its domain is the thinking experience of a human mind. As we cannot model this, we cannot model semantic (or at least, I used to believe it). Therefore the semantic is what’s left in the message once the syntax is withdrawn from it.

Except that there are no clear boundary between syntax and semantic. Self-referential sentences and onomatopoeia are examples of cases where you cannot make a clear cut.
Giving this inability, it didn’t seem scientifically-reliable to use this paradigm and I was therefore looking for something more objective.

I decided to use an approach that was much easier to integrate with digital systems while providing a dichotomy that better fit the problem. Considering what’s widely accepted (like syntax rules within a language more or less mastered by a group of people) is joining a convention to ease communication. And that’s really handy to have something like an origin / reference point (here, a commonly agreed syntax) to explain something relatively to these conventions (in order to talk to a certain public with specific words and images). But outside of human conventions, we rarely can benefit from a reference point in common cases processed through a human life.

Actually, besides really well-narrowed cases such as distinguishing a rectangle from a triangle on a picture, most interpretation problem we encounter don’t have a reference at all to be used in order to develop a comparative description.

Take the case of the sandpile vs grains of sand problem.
How many grains of sand to add to get to a sandpile, or how many to withdraw to just have some grains of sand ?

Then I guess you also need to scale the idea of how large a sandpile is to your expectations.
No referential is universally agreed upon here, although we can make a fuzzy idea of where’s the border between some grains of sand and a sandpile through polling people. That’s a way to extract a convention, or knowledge of representation, and answers would then be about right under some given precision / expectations.
Just like splitting syntax and semantic, that requires the work of modeling the language then normalizing local grammar conventions and words to get to a normalized language. In some languages having no neutral gender, such as French, this grammar normalization got a new impulse from gender issues regarding parity and neutrality of nouns.

Floating Boundaries; reading information through Meta / Mesa lenses

Similarly to considering sand to be either a quantity of the unit (grains of sand) or as a composite unit of its own right (sandpile), we can say that one of the unit (sandpile) is composed of the other (grain of sand).

I established that there can exist a situation where the grain of sand is the most fundamental component element of both the “some grains of sand” and the sandpile.

In a different context, the grain of sand could become the start of my exploration towards the most fundamental component. I could ask: “What is the most fundamental component of this grain of sand in regards of atoms?” and there we will be using a language that encodes a hidden knowledge of atoms, classified and named after their number of protons, like “silicone” or “carbon”. To get more detailed, I could use a language where we even differentiate how those atoms structure themselves, such as “SiO2“, thanks to a hidden theory of how atoms handle electrons.

I could also desire to find something without a giving context. Let’s say I want the “most fundamental component of anything that is” and, if I believe that matter is all there is, then I’ll end up looking for the most fundamental particle or field impulse in the universe. If I consider patterns to be the essence of what there is as a descriptive or a behavioral characteristic of matter, which then is just a support of information, then I’ll look at fundamentals such as mathematics, theoretical physics, computer sciences, etc.

With that approach, you can build your personal ordered list of what’s fundamental to you. Reverting prioritization means looking for the most meaningful/epic case instead of the most fundamental; then you’ll also get a personal classification.

I will call this “outer” bracket the Meta level of reading, and the most faithful one is the Mesa level of reading; because Metadata are data that refer to data, and Mesadata are data that are referred by data.
But those are really just two levels of reading information.
Mesa is trying to be large and detailed enough to be faithful to the source material with significance, accuracy and relevance.
Meta is casting the faithful Mesa representation to a schema connecting or expected by the system knowledge. That is in order to produce an enhanced interpretation of the data that is lossless but more relevant to the context of the process.

The pure-Mesa

This Mesa / Meta levels of reading could be illustrated through colors.
We can agree that, up to a certain precision, the 3 bytes representation of a color is enough to encompass everything that we can experience as a color, let’s call this a “pure” mesa point.
But, if we have to account for shapes, then a single pixel isn’t enough to experience much. It is still a mesa point but not precise enough to capture the shape. We could call it “under-pure” and, in extenso, an “over-pure” mesa point would be something that has significantly more precision than what is relevant to capture from the source material.

Then what is the color “red”? With one byte to each color in the order RGB, #FF0000 is considered red, but #FF0101 is also red as an imperceptible alteration. Is #EF2310 considered red? And what about #C24032 ? When does orange start?
There we are back at our grains of sand / sandpile original case; there are no clear boundary between red and orange.

Actually, the visible spectrum of orange + yellow is not even as large as half of the wavelength band we call green.
A mesa representation (based on physical sensors) can be really different from the meta representation (here a symbolic system where colors are classes, with sub-classes, and a logic based on primary colors (classes), complementary mapping,….
The same can be said about sound, but its logic is temporal instead of combinatorial.

Are there Symbols without Expression ?

Let’s take the number 3.
By “taking it”, I mean writing one of its expressions. I could have written “three” or “the result of 1+2”, it would have required a bit more resolution but the result would be the same.

Have you ever observed “Three”?
You obviously already experienced having 3 coins in your pocket or watching 3 people walking together on the street, but you’ve never experienced that absolute idea of a 3 such as to say “This is him! It’s Three!”. But you might have said this about someone famous you encountered, like maybe your country’s president.

Well, it’s obvious! you’ll claim after reading the preceding sections, my president is pure-mesa; (s)he’s an objective source of measurements present in the real world, so I can affirm this. But I cannot measure 3, I need to define arbitrarily from a measure so it might be pure meta, right?

Well, almost! Your president also has a label “President” (implicitly Human, Earthling,…). This means he embodies function that are fuzzy. There’s no embodiment of the notion of President, just people taking the title and trying to fit the function. Meaning a president is a composite type; (s)he has Mesa aspects from its measurable Nature but also Meta aspect from the schema of President (s)he’s trying to fill.

But is 3 pure-Meta?
I thought for a long time pure-Meta wasn’t a thing because you couldn’t escape representing it, therefore mixing it with a Mesa nature of the representation. So there’s that need for every symbol to be expressed in a way or another, otherwise it cannot be communicated and therefore doesn’t exist. That might be where I was wrong.

My three doesn’t require to become a thing to exist per se.
Through this blog, I proposed to approach the intelligence by modules which usually have a producer(/consumer), a controller and many feedback loops. And 3 has also producers and consumers specialized to recognize or to reproduce varieties of three in our nervous system. It follows that we can recognize, and act according to the recognition of, a property of 3 (elements) without mentioning it.

So, even if I cannot express the absolute idea of a number, such as 3, or a color, such as red, I can at least return acceptance, or deny it, over the seeked property.label (classification) which means I could at least tell if the “red” or “3” properties are true or false in a given context without being able to express why.

Therefore 3 exists both as a testable property and as a symbolic expression, but defined from a property.

Multiple Levels of reading

That’s leaving us with: Mesa could be made as accurate as it is physically measurable, then Meta can be made as meaningful as individuals could make it. We find back that idea of objective (comparative) referential and relative (non-comparative) referential. We could also say that what is Meta has a given data, what is Mesa has a given schema.

What becomes really interesting with that tool is to be able to work, not only between internal and external representations of some entity or event, but also to be able to work between different levels of representation as we grow shapes from colors and 3D movements from shapes.

I believe that modeling the knowledge of a human requires to be able to have at least 2 levels of readings that could be slided across multiple in-built levels of abstractions. One to define the unit, the other to define the composite.

After all, aren’t we hearing the sound wavelength and listening to the sound envelope?